

Transmission Line, Transformer & Protection Laboratory

Transmission Line, Transformer & Protection Laboratory

TERCO AB was founded in 1963 with the aim of producing and supplying practically oriented equipment for technical education.

TERCO develops, manufactures and markets advanced equipment and systems for technical education to be used at various levels for training in vocational schools, universities, organisations and industrial learning centres all over the world.

TERCO has delivered equipment to more then 65 countries throughout the world.

TERCO AB - one of the leading companies in technical education world-wide.

Guarantee & Terms

All overseas deliveries are dispatched in special, custom designed wooden crates, extremely sturdy and damage resistant.

The guarantee is valid for 12 months from delivery and covers repair or exchange of parts, defective due to faulty design or workmanship at our factory. Detailed conditions of guarantee are specified in our Terms of Guarantee.

Spare parts for 2-5 years of normal operation can be offered on request.

Regular after-sales service is performed by the world-wide network of Terco representatives, along with the advice and support of our engineers.

Commissioning and training is normally offered separately. Special training can be arranged on request either in Sweden or on site.

TERCO AB • P.O. Box 5014 • SE-14105 HUDDINGE – STOCKHOLM • SWEDEN Telephone: +46850685500 • Telefax +46850685501 • http://www.terco.se • e-mail export@terco.se

Contents

Ref.no	Product	Page
MV 1431	Static Relay Trainer	4
MV 1434	Distance Protection Trainer	6
MV 1435	Differential Relay Trainer	7
MV 1437	Frequency Relay Trainer	8
MV 1427	Relay Testing Unit	9
MV 1918	Digital Timer	9
MV 1428	Protective Relays, Installation Kit	10
MV 1919	Oil Immersed Transformer	11
MV 1911	Single Phase Transformer	12
MV 1931	Current Transformer	12
MV 1915	Three Phase Transformer	13
MV 1972	Three Phase Transformer	13
MV 1420	Line Model	14
MV 1424	Line Model	15
MV 1425	Line Model	16
MV 1438	Cable Model	17
	Flexes	18
MV 1904	Flex stand	19
	Rheostats	19
	Power Distribution System	20
	Laboratory Layout	21
MV 1429	Terminal Board	22
MV 1104	Variable Transformer 1-phase	22
MV 1103	Variable Transformer 3-phase	22
	Power Station and Transmission Simulator (PST 2200)	23
	Power Station Simulator (PSS 1200)	23

Terco reserves the right to make changes in the design and modifications or improvements of the products at any time without incurring any obligations.

MV 1431 Static Relay Trainer

This equipment is intended for practical training in static relay and relay protection engineering for applications in power systems.

The static relays used in the experiment unit belong to the well known ABB COMBIFLEX relay system. The unit is in form of a cubicle, made of a painted sheet metal enclosure with front panel, racks for relays and an auxiliary DC voltage supply.

Mimic diagrams of the relays with large clear symbols are printed on the front panel, and the connection and measuring points of the relays are led out to 4 mm banana plug safety sockets in various colours. Sockets are also provided for test objects.

The rack carries a selection of the static relays used in modern electric power systems.

Following relays are provided:

- 1. Instantaneous voltage relay
- 2. Instantaneous low current relay
- 3. Time-lag overcurrent relay
- 4. Directional relay
- 5. Adjustable current relay
- 6. Time-lag relay
- 7. Instantaneous high current relay
- 8. Auxiliary relay
- 9. Signal relay

Supply voltage

220-240 V, 50-60 Hz

Dimensions Weight 510 x 280 x 570 mm 30 kg

The laboratory manual for the Static Relay Trainer MV 1431 is divided into two parts:

Part A, dealing with construction and function of various types of protective relays.

Part B, which covers both medium level and advanced experiments on relay protection.

Curriculum of experiments in Part A:

Preface Description of relay unit The static relay Examples of symbols for operation and relay protection Introductory exercise

Instantaneous measuring relays for ac Operating and resetting values Power consumption Pick-up times

Static and electromechanical relay Operating and resetting values Power consumption Effect of the dc component

Time-lag overcurrent relay Operating resetting values for starting function without tripping function Inverse time curves Instantaneous operation

Directional relay for power or current with inverse time characteristic

Operating time curve Effect of voltage Effect of phase angle

Curriculum of experiments in Part B Medium level:

Preface

Description of relay unit The static relay Examples of symbols for operation and relay protection Directional overcurrent protection Neutral point voltage sum current Directional earth fault protection Differential protection

Advanced level:

Loss-of-sync and reverse power protection

Recommended peripheral equipment:

Qty	Description	Cat. Code
3 pcs 1 pc 2 pcs 1 pc 1 pc 1 pc 1 pc 1 pc 1 pc 1 pc 1 set 1 pc 4 pcs	Part A Power pack (alt MV 1103 Variable transformer 3- Load switch Digital timer Rheostat 100 W/1000 Ω Rheostat 200 W/5 Ω Rheostat 200 W/50 Ω Single phase transformer Diode 10 A Load capacitor Laboratory leads Floor stand for laboratory leads Digital multimeter	MV 1300 ph) MV 1500 MV 1501 MV 1918 MV 1956 MV 1957 MV 1959 MV 1911 MV 1433 MV 1102 MV 1830 MV 1904
	Medium level, Part B In addition to the equipment above	е
1 pc 2 pcs 1 pc 1 pc 1 pc 1 pc 2 pcs 2 pcs 3 pcs 1 pc 1 pc 1 pc 2 pcs 2 pcs 2 pcs 2 pcs 2 pcs	Selector switch Rheostat 100 W/1 Ω Rheostat 200 W/5 Ω Rheostat 500 W/150 Ω Rheostat 500 W/2500 Ω Rheostat 500 W/2500 Ω Push button panel Contactor Current transformer Three phase transformer Load resistor Load reactor Line model Digital multimeter	MV 1501 MV 1953 MV 1957 MV 1961 MV 1962 MV 1963 MV 1400 MV 1402 MV 1931 MV 1915 MV 1100 MV 1101 MV 1420
	Additional equipment for advance Part B	d level,
1 pc 1 pc 1 pc 1 pc 1 pc 1 pc	Synchronizing unit Latch on contactor DC machine Synchronous machine Machine bed	MV 1903 MV 1430 MV 1006 MV 1008 MV 1004

1 pcShunt rheostatMV 19051 pcAC-tachometer gen.MV 10251 pcRevolution counterMV 19251 pcPowerpackMV 1300

(if not ordered in Part A)

MV 1434 Distance Protection Trainer

This unit is intended for advanced training in static relay technology and relay protection engineering for applications on middle- and high voltage OH-transmission lines in power systems.

The measuring technique used in the distance protection relay terminal is based on pure numerical methods.

Versatile local man machine communication (MMC) from the relay front panel, together with an optical fiber built-in serial port, brings distance protection relay close to the user, whether he be located in a substation, control centre or in the students laboratory office.

Programming and readouts are performed from the MMC or from a standard PC

Features

The line distance protection terminal is based on the basic version of the distance protection relay from ABB and includes:

- Five distance protection zones for multiphase faults with individual setting of the directionality and reach in both reactive and resistive direction
- Separate and independent impedance measuring elements for the General Fault Criteria (GFC) with advanced characteristics

The trainer module contains, except for the protection relay, the following function modules:

- Internal DC-power supply
- Necessary current transformers
- Necessary voltage transformers
- Breaker simulator
- Digital inputs panel
- Output panel for communication, indications and tripping
- Auxiliary relays for AC and DC
- Software: Discs or CD for installation
 - User's manual and technical specifications Experiment manual

Examples of topics described in Experiments Manual:

- · Electrical diagrams and identifying components
- · Conditions for tripping
- Introduction to programming and calculation for a distance relay
- Calculating impedance ratio
- Calculating secondary impedances
- Setting parameters for impedance zones
- Setting of timers for the distance protection zones
- Selecting zone reach
- Setting instruction GFC (General Fault Criteria)
- Settings for trip functions
- How to set the terminal

- Creating radius network and calculating the impedance map
- Faults on a medium voltage line (MV 1424 or corresponding)
- Faults on a high voltage line (MV 1425 or corresponding)

Recommended external laboratory equipment

2 pcs	Voltmeter 50-250-500 V		MV 1926
1 pc	A-meter 0-1-2 A		MV 1922
1 pc	A-meter 0-6-12 A		MV 1923
1 pc	Three-phase power supply	0-230 V	MV 1103
1 pc	Terminal board		MV 1429
1 pc	Single-phase load resistor 2.25 A	40 ohms,	MV 1966
1 pc	Line model OH line 40 kV		MV 1424
1 pc	Line model OH line 130 kV MV 1425		MV 1425
1 pc	Cable model 5 kV MV 1438		
1 pc	Three-phase load resistor 230 V, 5 A MV 1100		
1 pc	Capacitor load bank MV 1102		MV 1102
1 pc	Inductive load bank MV 1101		MV 1101
2 pcs	Load switch MV 1500		MV 1500
1 set	Laboratory leads MV 1830		MV 1830
1 pc Stand for lab. leads MV 190			MV 1904
Supply V	oltage 220-240 V. 50-	60 Hz	

eappi) renage	, co co
Dimensions	510 x 280 x 570 mm
Weight	25 kg

MV 1435 Differential Relay Trainer

This unit is intended for practical training in static relay and relay protection engineering regarding differential protections around transformers and busbars in power systems.

The static relays used are ABB COMBIFLEX type.

The differential relay consists of the following submodules: restraint- and differential circuitry unit, filter and measuring unit, trip- and alarm unit, signal- and indication unit together with a test block to which an external relay tester can be connected.

The trainer integrates the differential relay blocks, 12 current transformers, a circuit breaker simulator, input terminals, output terminals, transformer connection panel and operating power supplies of 230 V AC and 110 V DC.

Examples of experiments:

Electrical diagrams and identifying components Conditions for tripping

Settings and indications of the differential relay

Characteristics of current transformers

Primary and secondary CT-currents at symmetrical- and nonsymmetrical loads

Protection of a single-phase transformer

Protection of a three-phase transformer in Yy-connection Protection of a three-phase transformer in Yd-connection Busbar protection

Recommended external laboratory equipment

1 pc	Experiment transformer, single-phase	MV 1911
1 pc	Experiment transformer, three-phase	MV 1915
2 pcs	Voltmeter 250 V	MV 1926
1 pc	A-meter 1 A and 2 A, or multimeter	MV 1922
4 pcs	A-meter 6 A and 12 A, or multimeters	MV 1923
1 pc	Variable transformer three-phase	MV 1103
	(or	· MV 1300)
1 pc	Terminal Board	MV 1429
3 pcs	Rheostat 0-5 ohm, 6.3 A	MV 1957
1 pc	Three-phase load resistor 230 V, 5 A	MV 1100
1 pc	Rheostat 0-50 ohm. 2.0 A	MV 1959
1 pc	Pushbutton box for the breaker	MV 1400
1 pc	Switch	MV 1500
1 pc	Timer	MV 1918
1 pc	Capicator load bank	MV 1102
1 pc	Reactor load bank	MV 1101
1 set	Laboratory leads	MV 1830
1 set	Clip-on ammeter or multimeter with	
	a current probe (50 mA)	
1 pc	Ohmmeter (Multimeter)	
1 pc	Oscilloscope	

1 pc Oscilloscope

Optional

 1 pc
 Test handle
 MV 1233

 Supply Voltage
 220-240 V, 50-60 Hz
 Image: Constraint of the second s

MV 1437 Frequency Relay Trainer

The trainer consists of industrial protection relays from ABB which has been built into a suitable enclosure together with auxiliary relays, a contactor relay, external power supplies and a connection board with a mimic diagram.

The integrated protection from ABB is placed behind a glass door and each module in the integrated relay is covered by a plastic protection to protect from dust when not used for experiments.

The connections for experiments are to be connected by safety 4 mm plugs of the lab. flex cords but may also be connected by the earlier used contact type.

The trainer can be used together with most types of laboratory equipment working on a voltage level of 220-400 V.

Setting possibilities:

- Setting range for ± 10 Hz variant
 Stage 1 (f 1) for 45-55 Hz or 55-65 Hz
 Stage 2 (f 2) for 40-60 Hz or 50-70 Hz
 Stage 2 can also be used for rate-of-change of frequency (df/dt)
- Combines frequency, rate-of-change (df/dt) and time delay functions in one module
- Absolute value df/dt or negative df/dt only
- Measuring voltage range 20-320 V AC (input voltage transformer included)
- Time delay settable up to 20 s.

Technical description of the protection:

The over/under frequency relay is a static microprocessor based relay with two delayed stages. The relay consists mainly of an input voltage transformer, filter circuits, microprocessor, MMI, LEDs for start, trip indications and three output units which provide separate change-over contacts for start indication of stages 1 and 2, trip of stage 1 and trip of stage 2

Operate values for both stage 1 and 2, are set with the potentiometers and programming switches. Both measuring stages can independently be programmed for over- or under frequency functions. Operation occurs for a frequency equal to or larger/lower than the set scale value and the selected scale constant.

Technical specifications:

Mains supply	220-240 V, 50-60 Hz
Fuses	glass tube
	5 x 20 mm, 2 A F
Internal DC-supply	230 V DC
DC-supply for electronics	± 24 V
Frequency range over	50 ± 5 Hz
frequency f1	
Frequency range under	50 ± 10 Hz
frequency f2	
Rate of change of frequency (df/dt)	0,5-10 mHz/sec
Trip relay for power circuits	5 A/250 V
Contactor relay, three-phase	
for machine circuits	16 A/500 V
D: :	

Dimensions Weight 510 x 280 x 570 mm appr. 25 kg

MV 1427 Relay Testing Unit

Range of application

Testing of current-, voltage-, time- and power-relays.

Start-up operations where variable current and voltage are required.

Testing of current transformers – ratio tests – plotting of magnetisation curves.

In electrical and measuring departments or in laboratories and technical schools.

Specifications

AC current 0-10 A (85 V), 0-40 A (25 V), 0-100 A (10 V) Built-in ammeter, ranges 0-10 A, 0-100 A Terminal for an external ammeter AC voltage 0-250 V, 3 A DC voltage 0-350 V, 2 A 110 V AC, 0.3 A terminal 20-220 V DC, 0.3 A terminal (independently adjustable) Built-in capacitor for testing of reactive power relays Terminal for synchronous start of an external device Electronic timer, independent of mains frequency. Measuring range 0-999.999 sec. Accuracy 0.02 % of readout +0, -2 ms. Terminal for external start and stop of timer The tripping circuit is equipped with a signal lamp Resistor set for voltage division etc.

Thermal protection of the output transformer

Mains supply	The Relay Testing Unit delivered for 110, 220 or 240 V AC, 50-60 Hz. Please specify one
Dimensions	280 x 178 x 178 + 63 mm
Weight	15 kg

MV 1918 Digital Timer

Suitable for measuring the pick-up and drop-out times of relays and for physical experiments. The timer has two inputs that can be wired either to start or stop timing. Timing is started or stopped by every change at the inputs (make or break). It is also possible to connect the timer to one of the inputs only, in which case the closing of a make contact starts the timer, and the opening of the circuit stops it.

The inputs are protected for over-voltage, AC and DC.

The counter is working up to about 400 V.

General Data

Two measuring range	es 1-9999 ms 0.01-99.99 s
Accuracy	± 1 ms
Height of digits	7 mm
Mains supply	220-240 V, 50-60 Hz
Dimensions	130 x 135 x 65 mm
Weight	1 kg

MV 1428 Protective Relays Installation Kit

Design

The equipment is built up in modular system ABB-COMBIFLEX. This system provides a means of assembling complete equipment of modularised plug-in apparatus, terminal bases, connectors, branch connectors, cross connection terminals and accessories.

Application

The installation kit is mainly intended for practicing diagram reading, installation, commissioning, operation and maintenance of equipment for control and protection. Together with the oil immersed transformer MV 1919, several different signal and protection schemes can be installed.

The main components are:

- 1. Apparatus cubicle
- 2. Earth fault protection
- 3. Voltage relay
- 4. Low voltage relay
- 5. Current relay
- 6. Time lag relays
- 7. Test switch
- 8. Rectifier
- 9. Signal system

Documentation

The comprehensive booklet contains a description of the equipment, applied theory, diagrams and wiring tables together with instructions for a number of exercises.

Recommended peripheral equipment

MV 1234	Tool set for installation, connectior and testing
MV 1824	Set of cables and connection devices
MV 1427	Relay testing unit
MV 1430	Circuit breaker simulator
MV 1919	Oil immersed transformer
MV 1429	Terminal board
MV 1500	Load switch
MV 1105	Load resistor
MV 7003	Spare part set for MV 1428
	Multimeter

General Data

Relays	
Rated frequence	50-60 Hz
Auxiliary voltage	220-240 V AC
Dimensions	600 x 650 x 2250 mm
Weight	50 ka

Transformers

MV 1919 Oil Immersed Transformer

MV 1919 is designed and equipped as a normal, industrial transformer and suitable for practicing installation, commissioning, operation and maintenance.

Together with the Protective Relay Kit MV 1428, it is possible to practice also diagram and connection chart reading, as well as installation, wiring and testing protective relays.

Necessary peripheral equipment

Qty	Description	Cat. Code
1 pc	Load switch 440 V, 16 A	MV 1500
1 pc	Terminal board	MV 1429
3 pcs	Wattmeter 1-phase 1 A, 0-500 V	MV 1927
3 pcs	Voltmeter 0-500 V	MV 1926
3 pcs	Current transformer	MV 1931
1 pc	Variable three-phase transformer	MV 1103
1 set	Lab leads, 4 lengths, 5 colours	MV 1830
1 pc	Floor stand for laboratory leads	MV 1904
	Spare parts for oil immersed	MV 7002
	transformer	
3 pcs	Multimeter	
1 pc	LCR-meter	

Specifications

Standard accessories:

- 1. Expansion vessel with oil level indicator, oil filler hole and test tap
- 2. Drying unit with oil seal (Dehydrating breather)
- 3. Gas detector relay with signalling and tripping contacts
- 4. Signal thermometer with signalling and tripping contacts
- 5. Porcelain bushings for 1 kV
- 6. Off-circuit tap changer with three positions
- 7. Rating plate
- 8. Control cubicle with terminal blocks, a protector (flashover protection with a non-linear resistor for connection to the transformer neutral point) and a voltage transformer, $\frac{400}{\sqrt{2}}/110$ V
- 9. Drain tray and drain valve
- 10. Earthing terminal
- 11. Lifting lugs
- 12. Testing equipment for gas detector relay
- 13. Open core current transformer, 200/1 A

Documentation

A comprehensive manual contains a description of the equipment, applied theory and instructions for a number of experiments. The exercises include tests stipulated in IEC recommendations.

Technical Data

Oil immersed 3-phase	e trans	sformer
Rated power		10 kVA
Rated frequency		50/60 Hz
Rated voltage		
Primary voltage		220-400 V, terminals for $\pm 5\%$
Secondary voltage		220-400 V
Cooling designation		ONAN
Connection designation		Dyn 11-Dzn 10
Impedance voltage		3,8 %
No-load losses		120 W
Load losses		320 W
Dimensions	700 x	460 x 1260 mm
Weight	220 kg	g

Transformers

Experiment	Transformers
Experiment	Transformer 5

Experiment Transformers	Qty	Description	Cat. Code
These transformers are designed for studies of single	1 pc	Variable three-phase transformer	MV 1103
and three-phase transformers, by the completion of a	1 pc	Load resistor	MV 1100
series of experiments, which are described in detail in	1 pc	Load reactor	MV 1101
the instruction manuals.	1 pc	Load capacitor	MV 1102
These include:	2 pcs	Voltmeter 0-500 V	MV 1926
mese molude.	3 pcs	Ammeter 0-2 A	MV 1922
Efficiency and short circuit impedance.	4 pcs	Ammeter 0-12 A	MV 1923
Waveform of the no-load current.	3 pcs	Wattmeter 1 A, 0-500 V	MV 1927
Inrush current.	4 pcs	Wattmeter 5 A, 0-500 V	MV 1928
Three-phase connections.	1 pc	Load switch	MV 1500
Unbalanced loading.	1 pc	Laboratory leads, 4 lengths,	
To a second state of the second state state the following second state state		5 colours	MV 1830
equipment is required:	1 pc 1 pc 1 pc	Floor stand for laboratory leads Memory oscilloscope Multimeter	MV 1904

MV 1911 Transformer single-phase

Ratings

Single-phase 1 kVA, 50-60 Hz, Primary: 220 V ± 5 % Secondary: $4 \times 55 V \pm 5 \%$

The secondary winding is divided into four windings for series or parallel connection.

No load losses $P_0 = 25 W$ Impedance voltage $e_{k} = 8 \%$ Resistance voltage $e_k = 3 \%$

MV 1911 can be used for determination of operating characteristics, losses and efficiency of a single-phase transformer by means of no load, short-circuit and load tests. The transformer has safety sockets.

210 x 150 x 210 mm Dimensions Weight 22 kg

MV 1931 Current Transformer

Primary 20-15-5 A/Sec. 1 A

Safety sockets

Accuracy class	1.0
Dimensions	95 x 200 x 80 mm
Weight	6 kg

Transformers

MV 1915 Transformer 3-phase

The tappings are so arranged that 220 V (star or delta connection) and 127 V (star, delta or zig-zag connection) can be obtained for all standard connections.

This transformer has safety sockets.

No load losses $P_0 = 35 \text{ W}$ Impedance voltage $e_k = 8\%$ Resistance voltage $e_k = 3\%$

With MV 1915, asymmetrical loading and parallel connection of three-phase transformers for different three-phase combinations on the primary and secondary side, can be studied.

It can also be used for determination of operating characteristics, losses and efficiency.

Dimensions Weight 300 x 190 x 345 mm 33 kg

MV 1972 Transformer 3-phase

This transformer has an E-type core and is suitable for setting up a variety of circuits for 3-phase transformers. Made with 2×2 scarf joints. MV 1972 has safety sockets.

General Data

Power rating Primary voltage
Secondary voltage Number of turns

Number of turns

Test voltage2.5 kVEfficiency92 %Percentage impedance
voltage4 % aDimensions350 xWeight30 kg

Tree-phase 2 kVA, 50-60 Hz 400 V \pm 5 % per phase 2 x 70 V \pm 5 % per phase 70 V winding, 105 turns 2.27 mm diam. 400 V winding, 586 turns, 1.33 mm diam. 2.5 kV 92 % 4 % approx. 350 x 165 x 260 mm

MV 1420 Line Model

The network model can be used to complete a series of experiments with transmission lines. Those listed and described in detail in the instruction manual include:

Characteristic data of the line. Voltage drop on the lines. Short circuit. Earth fault.

To complete all the experiments the following peripheral equipment (or similar) is required to MV 1420.

Qty	Description	Cat. Code
1 pc	Variable transformer	MV 1103
1 pc	Load resistor	MV 1100
1 pc	Load reactor	MV 1101
1 pc	Load capacitor	MV 1102
3 pcs	Voltmeter 0-500 V	MV 1926
3 pcs	Ammeter 0-2 A	MV 1922
3 pcs	Ammeter 0-12 A	MV 1923
3 pcs	Wattmeter 1 A, 0-500 V	MV 1927
3 pcs	Wattmeter 5 A, 0-500 V	MV 1928
1 pc	Load switch	MV 1500
1 pc	Power factor meter	MV 1929
2 pcs	Three-phase transformer	MV 1915
1 set	Laboratory leads	MV 1830
1 pc	Floor stand for laboratory leads	MV 1904

The model corresponds to a power transmission line of a length 136 km, voltage 77 kV, amperage 100 A, power rating 13 MW.

The following studies can be made:

- 1. Measurements of characteristic data, resistance, reactance and capacitance of a line.
- As transmission line: Measurement of voltage drop and losses for different loads.
- 3. For two-phase and especially three-phase short-circuit measurements with two three-phase transformers, one at each end.
- 4. For single-phase and two-phase earth fault measurements.

General Data

Voltage	220-240 V, three-phase (corresponding to 77 kV)
Amperage	5 A (corresponding to 100 A)
Line resistance	1.5 ohms
Line reactance	3.15 ohms
Line capacitance divided	into capacitance to earth (4 µF

Line capacitance divided into capacitance to earth (4 $\mu F)$ and mutual line capacitance between phases (8 $\mu F).$

Earth impedance	0.8 ohm
Fuses	5 A

Dimensions Weight 410 x 245 x 160 mm 10 kg

Line Models

The following Line Models and Cable Model are designed for realistic conditions, such as overvoltage, overcurrent, and a certain magnetic coupling between the wires.

As linear behaviour for excess values is required, the line inductances must be represented by non-saturable induction coils. To withstand certain overvoltages, overdimensioning of wiring and capacitors is necessary.

One of the models is representing a high voltage line – 130 kV or higher, and the other a feeder at medium level 40 kV.

All models are constructed as $\pi\text{-links},$ the HV model and the cable model as a double $\pi\text{-link}.$

Flexibility to simulate typical situations, such as compensating a long line at both ends and also in the middle, must also be available. Combination of the π -links make it possible to create other characteristic data, e.g. capacitors can be connected in Δ instead of Y.

MV 1424 Line Model

Real line parameters	
Nominal length	40 km
Nominal voltage	40 kV
Nominal current	350 A
Positive sequence	
reactance X+	15 ohm
Zero sequence	
reactance X0	23 ohm
Positive sequence	
resistance R+	8.4 ohm
Zero sequence	
resistance R ₀	16.0 ohm
Positive sequence	
capacitance C+	400 nF
Zero sequence	
capitance Co	265 nF

Line Model specifications

Represented length
Nominal voltage
Maximum voltage
Nominal current
Maximum current
R ₁ = 4.7 ohm
$R_0 = 0.8 \text{ ohm}$
X ₁ = 2πω x 5.45 mH
C ₁ = 1.0 μF
C _O = 0.6 μF

Dimensions Weight 550 x 550 x 1600 mm 90 kg

32 A (60 sec)

40 km 400 V 600 V 10 A

MV 1425 Line Model

Real line parameters

Real line parameters		Line Model specifications		
Nominal length	100 km (2 sections, each 50 km)	Represented length	100 km with two π -links, each corres-	
Nominal voltage Nominal current Positive sequence reactance X+ Zero sequense reactance X ₀	130 kV or higher 775 A 18 ohm 24 ohm	Data for one π-link Nominal voltage Maximum voltage Nominal current Maximum current (60 sec)	400 V 600 V 10 A 32 A	
Positive sequence resistance R+ Zero sequence resistance R ₀ Positive sequence capacitance C+	1.77 ohm 8.0 ohm 475 nF	$\begin{array}{l} {\sf R}_1 = 0.5 \; {\rm ohm} \\ {\sf R}_0 = 0.8 \; {\rm ohm} \\ {\sf X}_1 = 2\pi\omega \; {\rm x} \; 3.77 \; {\rm mH} \\ {\sf C}_1 = 8.9 \; \mu {\sf F} \\ {\sf C}_0 = 0.6 \; \mu {\sf F} \end{array}$		
Zero sequence capacitance C ₀	315 nF	Dimensions Weight	550 x 550 x 1600 mm 120 kg	

MV 1438 Cable Model

MV 1438 consists of two cable sections with a nose section cable area of 150 square and 240 square respectively.

Real line parameters		Line	Model specs
PEX Cable 150 square	Al	(one	π-link)
Length	5 km	corr.	5 km
Nominal voltage	11 kV		400 V
Nominal current	260 A		6 A
Transmission ability	5.0 MVA		2.4 kVA
Positive sequence capitance C+	0.45 μF		0.28 μF
Zero sequence capitance C ₀	0.45 mF		0.28 mF
Inductance	1.8 mH		2.84 mH
Resistance	1.1 ohm		1.8 ohm

Real line parameters		Line	Model specs
PEX Cable 240 square Al		(one π-link)	
Length	5 km	corr.	5 km
Nominal voltage	11 kV		400 V
Nominal current	340 A		6 A
Transmission ability	6.5 MVA		2.4 kVA
Positive sequence capitance C+	0.55 μF		0.26 μF
Zero sequence capitance C0	0.55 μF		0.26 μF
Inductance	1.6 mH		3.30 mH
Resistance	0.7 ohm		1.5 ohm

Dimensions Weight 550 x 550 x 1600 mm 90 kg

Flexes

Terco Flex

The Terco Flex complies with the safety requirement that connection shall not be made sideways, as well as with all reasonable demands on a laboratory flex.

Moulded soft PVC covering for high reliability cable anchorage.

General Data

Standard colours	blue, read, yellow, black, yellow/green
Standard area	2.5 mm ² containing 650 wires of
	0.07 mm diameter
Rated current	25 A

MV 1830 Flex Set

Set of 100 Lead	ds in 5 colo	urs. Area 2	.5 mm²	
	25 cm	50 cm	100 cm	200 cm
Red	5	5	5	5
Yellow	5	5	5	5
Blue	5	5	5	5
Black	5	5	5	5
Yellow/green	5	5	5	5

MV 1830 Flex set also exists with double quantities of flexes as code no MV 1801

Separate Flexes

Area 2.5 mm². Please note, each Ref. No. refers to a pack of 10 leads.

	25 cm	50 cm	100 cm	200 cm
Red	MV 1802	MV 1807	MV 1812	MV 1817
Yellow	MV 1803	MV 1808	MV 1813	MV 1818
Blue	MV 1804	MV 1809	MV 1814	MV 1819
Black	MV 1805	MV 1810	MV 1815	MV 1820
Yellow/green	MV 1806	MV 1811	MV 1816	MV 1821

Laboratory Flexes with Safety Plugs

Safety lead with 2 covered spring plugs of 4 mm diameter, with stiff protection sockets covering the plugs, and 4 mm diameter axial bushings moulded with Polypropylen, fixed to 1.5 mm² copper thread, PVC isolated, outer diameter 4 mm. Colours black, red, blue, yellow, green/yellow. Rated current 16 A.

MV 1830-HF Flex set also exists with double quantities of flexes as code no MV 1801-HF

MV 1830-HF Flex Set

Area 1.5 mm²

Set of 100 leads in 5 different colours, red, yellow, blue, black, yellow/green, and 4 different lengths, 25, 50, 100 and 200 cm, 5 of each.

	25 cm	50 cm	100 cm	200 cm
Red	5	5	5	5
Yellow	5	5	5	5
Blue	5	5	5	5
Black	5	5	5	5
Yellow/green	5	5	5	5

Separate Flexes

Area 1.5 mm²

Please note, each Ref. No. refers to a pack of 10 leads.

	25 cm	50 cm	100 cm	200 cm
Red	MV 1802-HF	MV 1807-HF	MV 1812-HF	MV 1817-HF
Yellow	MV 1803-HF	MV 1808-HF	MV 1813-HF	MV 1818-HF
Blue	MV 1804-HF	MV 1809-HF	MV 1814-HF	MV 1819-HF
Black	MV 1805-HF	MV 1810-HF	MV 1815-HF	MV 1820-HF
Yellow/Green	MV 1806-HF	MV 1811-HF	MV 1816-HF	MV 1821-HF

Rheostats and Flex Stand

Standard Types

Each rheostat is enclosed in a robust metal case. The back, bottom and top of the case are perforated to provide optimum cooling.

2 glass fuses protect the resistor agains excessive current and incorrect connection.

A scale with 100 scale divisions shows the resistance setting.

A front panel of yellow painted aluminium with black screen painted symbols simplifies series and potentiometer connection.

Constructional features

The insulation is of high class ceramic material. The resistance wire used is of highest quality with very good linearity.

Large flat brush with a sliding contact of copper graphite with specially balanced mounting guarantees perfect contact with negligible wear on the resistance.

MV 1904 Flex Stand

For suspension of laboratory flexes. The stand has 12 slots between parallel tubes with space for 10-15 laboratory flexes in each slot. Flexes of length 200 cm are suspended in a separate position above the stand. This rigid stand has a heavy steel plate pedestal.

General Data

Height
Weight

1170 mm 9 kg

Order No.	Power W	Re- sistance Ohm	Max. current A	Dimen- sions
MV 1953	100	1	10.00	
MV 1954	100	10	3.20	
MV 1955	100	100	1.00	
MV 1956	100	1000	0.30	140x130
MV 1957	200	5	6.30	x 145
MV 1958	200	15	3.70	
MV 1959	200	50	2.00	
MV 1960	200	300	0.80	
MV 1966	200	40	2.25	
MV 1961	500	150	1.80	
MV 1962	500	500	1.00	
MV 1963	500	2500	0.45	215x195
MV 1964	500	5000	0.30	x 230
MV 1965	500	10000	0.20	

Power Distribution System increases Safety in School Laboratories

Terco's Power Distribution System consists of a distribution board which is installed near the classroom. Each circuit is protected by a MCB, making energising and isolating a simple process for the teacher. There is also a protection device which breaks the voltage in the event of accidental disturbance in any phase. An emergency stop is placed in a prominent position in the classroom and will break all supplies when operated.

TF 1251 Distribution Board

The distribution board is used for separate distribution of power to each lab. group (Student Panel). Contains 3-pole 16 A miniature circuit breakers, ers, earth fault circuit breaker, indicator lamp and control keys. The distribution board breaks the supply voltage when a current \ge 4mA flows in the protection lead.

Order No.	Weight kg	Dim. mm
TF 1251 for 12 groups	10	480 x 330 x60

TF 1252 Student Panel

Student panel for mounting on wall or table. One 3-pole switch 16 A. Miniature circuit breaker. Three 2-pole, 2-way earthed wall sockets. One 3-phase socket. One protective earth terminal. Junction Line for distribution of any AC or DC voltage. The 4 junction line terminals are marked from 1 to 4. The intention is to connect all terminals marked "1" to each other, all "2" to each other etc. on respective student panel in the entire laboratory. By doing the above installation you can e.g. supply 30 V between terminals 1 and 2 on one of the student panels and all other student panels in the lab will also have 30 V between terminals 1 and 2.

Order No.	Weight kg	Dim. mm
TF 1252	7	600 x 120 x 75

TF 1253 Transformer

Connection vo Connection Secondary	oltage	3-phase 380-415 Delta/Star-0 3-phase 380-415	V + / - 5 % 50-60 Hz / 220-240 V 50-60 Hz
Order No.	Power	Weight kg	Dim. mm
TF 1253	10 kVA	85	420 x 250 x 420

TF 1229 Contactor with Thermal Protector (enclosed)

Intended for transformer above.

Order No.	For Transformer	Weight kg	Dim. mm
TF 1229	TF 1253	1	142 x 115 x 112

TF 1211 Emergency Stop

Emergency stop including emergency sign (in English).

Order No.	Weight kg	Dim. mm
TF 1211 enclosed	0.4 kg	70 x 80 x 50
Surface mounting		

Laboratory Layout

The layout is most important when designing a functional laboratory. It is of great importance that equipment and furniture are taken into account early in the planning stage. A standard solution for planning a laboratory for 16 students can be seen below. If the space of the laboratory has been determined already, the standard solution may not be applicable. Our engineers will be pleased to advise on any individual requirements. See also our brochures for power supplies and furniture.

- Three-phase benches for accessories such as protective relays, loads, power supplies, switches, flex stands with flexes.
- **2** Line models, floor standing.
- **3** Four benches for experiments on transformers or for theoretical follow-up of the experiments.
- **4** Cabinets for instruments, tools and accessories.
- Teacher desk.
- 6 Roller table.
- Terco Safety Power Distribution System with key-operated central, transformer, student-panels and emergency stops.
- **8** Oil immersed transformer.

Accessories

MV 1429 Terminal Board

The box has outlets for laboratory leads with 4 mm diameter plug pins. These outlets are connected to a 5 x 2.5 mm² cable of 1.5 m length and cable connection for a diameter of 5.5 mm. The connection box is equipped with miniature circuit breakers for 20 A.

Dimensions Weight

250 x 240 x 75 mm 2.0 kg

MV 1104 Variable Transformer 1-phase

The core of the variable transformer is of high alloy transformer sheet with small losses. The contact point on the winding, which is wound for a constant current obtained throughout the entire range, is provided by a carbon contact.

Thermal overload protector.

Switch with pilot lamp. Rubber pedestals at the bottom and rear for convenient placing in the most suitable position at any time.

General Data

220 V +/- 5 % Input Output-maximum 0-250 V, 8 A

Dimensions Weight

200 x 190 x 205 mm 9 kg

MV 1103 Variable Transformer 3-phase

Supplied with a scale showing output voltage. Thermal overload protection for the three output phases are placed on the front panel. Same technical data as MV 1104 above.

Input	3 x 400 V, 8 A	
Output	3 x 0-450 V, 8 A	
Dimonsions	280 v 300 v 470 mm	

Dimensions 280 x 300 x 470 mm Weight 32 kg

MV 1103-415 Variable Transformer 3-phase

As MV 1103 above but with the following voltages and currents.

Input	3 x 415 V, 8 A (maximum values)
Output	3 x 0-415 V, 8 A

Power System Simulators

POWER SYSTEM SIMULATOR **PST 2200**

The picture shows a complete standard Power System Simulator level 3 with turbine-generator, power plant section, transmission lines, receiving substation and the load module incl. an induction motor with flywheel.

The Power System Simulator PST 2200

is a simulated power station with three-phase artifical lines, simulated loads and a complete range of generator and system protection equipment.

The PST 2200 has close resemblance to actual field conditions but with the reduced power the risk of accidents is minimized as well as space requirements.

The system consists of four modules which can be operated individually and completed later with remaining modules.

This enhances the economical flexibility as well as it gives excellent opportunities to specialize on certain training items.

PST 2210 MODULE NO. 1

POWER PLANT MODULE WITH HIGH VOLTAGE BUSBARS AND OUTGOING LINES

PST 2220 MODULE NO. 2 TRANSMISSION LINES MODULE

PST 2230 MODULE NO. 3

RECEIVING SUBSTATION MODULE WITH HIGH VOLTAGE SIDE AND MEDIUM VOLTAGE FEEDERS

PST 2240 MODULE NO. 4 LOAD MODULE

For more information, ask for a detailed brochure

POWER SYSTEM SIMULATOR PSS 1200

TERCO also manufactures another power system simulator, the PSS 1200. This simulator has the same mimic structure but all components are built-in into industrial racks which are possible to open at the front.

This simulator has analogue instruments.

High Voltage Power System Model

- 1. Power Station Simulator incl. Turbine-Generator
- 2. Basic Loads and Measurements
- 3. Advanced Loads and Measurements
- 4. Substation Simulator

Industrial Power Distribution Model

- 5. Oil Immersed Transformer
- 6. Low Voltage Switchgear with Industrial Load Models.

The modular system was chosen due to its flexibility and adaptability, both to the size of student groups and to available laboratory space.

TERCO has the possibility to offer training, in Sweden or at site, of technical people in POWER SYSTEMS, INDUSTRIAL ELECTRONICS, POWER ELECTRONICS, ELECTRICAL MACHINES, and MOTOR DRIVES.

Please ask for our special brochure and further information.

Turbine Generator

Step-up transformer

Busbar system Outgoing line

Terco headoffice

Terco headoffice and factory outside Stockholm, Sweden.

TERCO AB • P.O. Box 5014 • SE-14105 HUDDINGE – STOCKHOLM • SWEDEN Telephone: +46850685500 • Telefax +46850685501 • http://www.terco.se • e-mail export@terco.se